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Data Converter Operation and Characterization
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Data Converters 
Electronic Data Conversion Process: 
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• The comparator is the basic analog to digital conversion element in all ADCs

• The switch is the basic digital to analog conversion element in all DACs

• Data converters incorporate one or more basic ADC or DAC cells

• Design of comparator or switch is often critical in data converters

• Performance of data converters often dependent upon performance of 

comparator, switch, and matching
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D/A Converters
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An Ideal DAC transfer characteristic (3-bits)

Code Ck is used to represent the decimal equivalent of the binary number <bn-1 .. b0)>
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D/A Converters
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• Number of outputs gets very large for n large

• Spacing between outputs is XREF/2n and gets very small for n large
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A/D Converters

OUT n-1 n-2  0X =<d ,d ,...d >

d0 is the Least Significant Bit (LSB)

dn-1 is the Most Significant Bit (MSB)

An Ideal ADC is characterized at low frequencies by its static performance
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A/D Converters
An Ideal ADC transfer characteristic (3-bits)
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A/D Converters
An Ideal ADC transfer characteristic (3-bits)
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 OUTX is the interpreted value of XINThe second vertical axis, labeled 
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A/D Converters
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• Number of bins gets very large for n large

• Spacing between break points  is XREF/2n and gets very small for n large

XIN
ADC

n
XOUT

where ε is small (typically less than 1LSB)

ε is the quantization error and is inherent in any ADC
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A/D Converters XIN
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• Actual values of XIN where transitions occur are termed transition points or break  

   points

• For an ideal n-bit ADC, there are 2n-1 transition points

• Ideally the transition points are all separated by 1 LSB  -- XLSB=XREF/2n

• Ideally the transition points are uniformly spaced

• In an actual ADC, the transition points will deviate a little from their ideal location

Labeling Convention:      We will define the transition point XTk to be the break point where 

the transition in the code output to code Ck occurs.  This seemingly obvious ordering of 

break points becomes ambiguous, though, when more than one break points cause a 

transition to code Ck which can occur in some nonideal ADCs



A/D Converters XIN
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A/D Converters XIN
ADC

n
XOUT

Quantization Errors
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A/D Converters XIN
ADC

n
XOUT

Quantization Errors

 OUT  IN-Q =X X

Magnitude of εQ bounded by ½ XLSB
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Does the second structure have better performance?

P-P quantization error is what is important when designing ADC and both are the same 

No!



A/D Converters
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• The only way to reduce p-p quantization errors (in Nyquist-rate 

converters) is to increase number of levels

• A lower bound on the quantization errors in 0 < XIN < XREF is ±½ XLSB

• The static performance of an ADC is completely determined by the finite 

sequence of the transition points < XT1 , … XT1>
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A/D Converters
Many types:

Successive Approximation Register (SAR)

Pipelined

Sigma-Delta

Flash

Single-slope

Dual-slope

…Wide ranges of performance:

Speed

Resolution

Power

Cost

…Large number of vendors of catalog parts:

Texas Instruments

Analog Devices (Linear Technology)

Maxim

…
Embedded applications probably much larger:

Many SoCs contain a large number of data converters of with varying 

performance



A/D Converters
What types are really used?

Consider catalog parts from one vendor – Analog Devices  (Jan 2017)

Flash                2

SAR             233

Pipelined      242

Sigma-Delta   81

Total              559



What do ADCs cost?



What do ADCs cost?

Resolution?

3 bits to 24 bits  (one at 32 bits)



$2.58 in 1000’s





$120 in 1000’s









Performance Characterization of Data  Converters

• A large number of parameters are used to characterize a data converter

• Performance parameters of interest depend strongly on the application 

• Very small number of parameters of interest in many/most applications

• “Catalog” data converters are generally intended to satisfy a wide range

 of applications and thus have much more stringent requirements placd on 

their performance

• Custom application-specific data converter will generally perform much 

better than a “catalog” part in the same
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Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Quantization Noise

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation



Performance Characterization of Data Converters

• Dynamic characteristics
– Conversion Time or Conversion Rate (ADC)

– Settling time or Clock Rate (DAC)

– Sampling Time Uncertainty (aperture uncertainty or 
aperture jitter)

– Dynamic Range

– Spurious Free Dynamic Range (SFDR)

– Total Harmonic Distortion (THD)

– Signal to Noise Ratio (SNR)

– Signal to Noise and Distortion Ratio (SNDR)

– Sparkle Characteristics

– Effective Number of Bits (ENOB)



Dynamic characteristics
• Degradation of dynamic performance parameters often 

due to nonideal effects in time-domain performance

• Dynamic characteristics of high resolution data 
converters often challenging to measure, to simulate, to 
understand source of contributions, and to minimize

Example:  An n-bit ADC would often require SFDR at the 6n+6 bit level or 

better.  Thus, considering a 14-bit ADC, the SFDR would be expected to be at 

the -90dB level or better.

If the input to the ADC is a 1V p-p sinusoidal waveform, the second harmonic 

term would need to be at the                             level or lower.   A 32uV level is 

about 1 part in 30,000.   Signals at this level are difficult to accurately simulate 

in the presence of a 1V level signal.   For example, convergence parameters in 

simulators and  sample (strobe) points used in data acquisition adversely affect 

simulation results and observing the time domain waveforms that contribute to 

nonlinearity at this level and relationships between these waveforms and the 

sources of nonlinearity is often difficult to visualize.   Simulation errors that are 

at the 20dB level or worse can occur if the simulation environment is not 

correctly established.

( )90 /20
10 32μV

dB dB−
=



Characterization of Data Converter 

Performance

Critical to know how to accurately characterize an ADC

What may appear to be minor differences in performance are often

differentiators in both the marketplace and in the profit potential of a part

• Almost all ADC architectures will work perfectly if nonideal 

effects are ignored !!

• Most data converter design effort involves managing 

nonideal properties of components

• “Devil is often in the detail”  when designing an ADC



Performance Characterization of Data Converters

What is meant by “low frequency” ?

Operation at frequencies so low that further 

decreases in frequency cause no further 

changes in a parameter of interest

Low frequency operation is often termed Pseudo-

static operation



Low-frequency or Pseudo-Static Performance
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Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Quantization Noise

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation



Performance Characterization

• Number of distinct analog levels in an ADC

• Number of digital output codes in A/D

• In most cases this is a power of 2

• If a converter can resolve 2n levels, then we term it an n-bit 
converter
– 2n analog outputs for an n-bit DAC

– 2n-1 transition points for an n-bit ADC

• Resolution is often determined by architecture and thus not 
measured

• Effective resolution can be defined and measured
– If N levels can be resolved for an DAC then

– If N-1 transition points in an ADC, then

Resolution

EQ
logN

n =
log2

EQ
logN

n =
log2



Performance Characterization

Generally Defined by Manufacturer to be

XLSB=XREF/N  

Least Significant Bit

Assume 
nN = 2

Effective Value of LSB can be Measured

For DAC:  XLSB is equal to the maximum increment in the output for a single 

bit change in the Boolean input

For ADC:  XLSB is equal to the maximum distance between two adjacent 

transition points 



Performance Characterization
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For DAC with ideal code 0 output of 0V  the offset is
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Performance Characterization
Offset
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• Offset strongly (totally) dependent upon performance at a single point

• Probably more useful to define relative to a fit of the data

(for DAC)



Performance Characterization
Offset

Offset relative to fit of data
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Performance Characterization

XT1 -XLSB    - absolute

       - in LSB

Offset
For ADC with ideal transition point at 1 LSB, the offset is
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Performance Characterization
Offset

For ADC the offset is
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• Offset strongly (totally) dependent upon performance at a single point

• Probably more useful to define relative to a fit line of the data



Performance Characterization
Offset

For ADC the offset is
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Offset relative to fit line of data



Performance Characterization
Offset Offset relative to fit  line
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Probably more useful to define relative to a fit line of the data

But more useful definition seldom used 

Why is more useful definition seldom used? Probably due to test costs !



Performance Characterization
Gain and Gain Error
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Performance Characterization
Gain and Gain Error
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Performance Characterization

Gain and Offset Errors

• Fit line would give better indicator of error in gain but less practical to 

obtain in test

• Gain and Offset errors of little concern in many applications

•  Performance  of systems using data converters is often nearly   

     independent of gain and offset errors

•  Can be trimmed in field  if gain or offset errors exist and are of concern



Performance Characterization of Data Converters

• Static characteristics
– Resolution

– Least Significant Bit (LSB)

– Offset and Gain Errors

– Absolute Accuracy

– Relative Accuracy

– Integral Nonlinearity (INL)

– Differential Nonlinearity (DNL)

– Monotonicity (DAC)

– Missing Codes (ADC)

– Quantization Noise

– Low-f Spurious Free Dynamic Range (SFDR)

– Low-f Total Harmonic Distortion (THD)

– Effective Number of Bits (ENOB)

– Power Dissipation



Integral Nonlinearity (DAC)
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Integral Nonlinearity (DAC)
Nonideal DAC
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Integral Nonlinearity (DAC)
Nonideal DAC
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Integral Nonlinearity (DAC)
Nonideal DAC
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Integral Nonlinearity (DAC)
Nonideal DAC
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INL often expressed in LSB

( ) ( ) OUT  OF
k

 LSB
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INL =

X X

X
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0 k N-1

INL= max INL
 

• INL is often the most important parameter of a DAC

• INL0 and INLN-1 are 0 (by definition)

• There are N-2 elements in the set of INLk that are of concern 

• INL is almost always nominally 0 (i.e. designers try to make it 0)

• INL is a random variable at the design stage

• INLk is a random variable for 0<k<N-1

• INLk and INLk+j are almost always correlated for all k,j (not incl 0, N-1)

• Fit Line is a random variable

• INL is the N-2 order statistic of a set of N-2 correlated random variables

• INL is a parameter that is attempting to characterize the linearity of a DAC !



Integral Nonlinearity (DAC)
Nonideal DAC

INXC0 C1 C2 C3 C4 C5 C6 C7

XREF

INL

XOUT

• At design stage, INL characterized by standard deviation of the random variable

• Closed-form expressions for INL almost never exist because PDF of order statistics of 

correlated random variables is extremely complicated

• Simulation of INL very time consuming if n is very large (large sample size required to 

establish reasonable level of confidence)
− Model parameters become random variables

− Process parameters affect multiple model parameters causing model parameter correlation

− Simulation times can become very large

• INL can be readily measured in laboratory but often dominates test costs because of 

number of measurements needed when n is large

• Expected value of INLk at k=(N-1)/2 is largest for many architectures

• Major effort in DAC design is in obtaining acceptable yield !

• Yield often strongly dependent upon matching of random variables!



Stay Safe and Stay Healthy !



End of Lecture 2
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